(5) F. D. Chattaway and G. Hoyle, J. Chem. Soc., 123, 654 (1923)
(6) J. C. Evans and G. Y.-S. Lo, J. Chem. Phys., 44, 3638 (1966).
(7) C. Hall, D. W. Kydon, R. E. Richards, and F. R. S. Sharp, Proc. Roy. Soc., Ser. A, 318, 119 (1970).
(8) T. Migcheisen and A. Vas, Acta Crystallogr., 22, 812 (1967).
(9) (a) C. H. Townes and B. P. Dailey, J. Chem. Phys., 17, 782 (1949); (b) B.
P. Dailey and C. H. Townes, ibid., 23, 118 (1955)
(10) W. Gabes and M. A. N. Nyman-Meester, Inorg. Chem., 12, 589 (1973).
(11) E. F. Riedel and R. D. Willett, Theoret. Chim. Acta, in press.
(12) R. Ikeda, D. Nakamura, and M. Kubo, J. Phys. Chem., 69, 2101 (1965).
(13) H. Fleming and M. W. Hanna, J. Amer. Chem. Soc., 93, 5030 (1971).
(14) D. E. Scaife, Aust. J. Chern., 24, 1993 (1971).

Electrostatics and the Chemical Bond. ${ }^{1}$ I. Saturated Hydrocarbons

Sidney W. Benson* and Menachem Luria ${ }^{2}$
Contribution from the Department of Thermochemistry and Chemical Kinetics, Stanford Research Institute, Menlo Park, California 94025. Received April 18, 1974

Abstract

A model of the $\mathrm{C}-\mathrm{H}$ bond is proposed in which each H atom in an alkane bears a formal charge of $+0.278 \times 10^{-10}$ esu (0.0581 electronic charge) and each C atom a neutralizing negative formal charge. Summing up all of the electrostatic interactions in an alkane due to these formal charges gives rise to a net stabilizing electrostatic energy for each alkane $E_{\mathrm{el}}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ which depends only on the geometrical structure. This is then shown to lead to a surprisingly simple formula for the standard enthalpies of formation for alkanes given by: $J H_{f}{ }^{\circ}{ }_{298}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right.$ gas $)=-2.0(n+1)-0.5+E_{\mathrm{cl}}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$. This fits the observed values of $\Delta H_{f}{ }^{\circ}{ }_{298}$ for all the n-alkanes to $n-\mathrm{C}_{7} \mathrm{H}_{16}$ and for the branched alkanes up to $\mathrm{C}_{5} \mathrm{H}_{12}$ to ± 0.2 $\mathrm{kcal} / \mathrm{mol}$. It is also shown that the observed dipole moments of propane and $i-\mathrm{C}_{4} \mathrm{H}_{10}$ agree well with the formal charge distribution if proper account is taken of mutual group polarization. It is furıher shown that the barrier to rotalion about single bonds and the unfavorable gauche conformations in hydrocarbons cannol be quantitatively accounted for by electrostatic interactions. The rotation barrier, the gauche interaction, and ihe anomalously large $\mathrm{C}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}-\mathrm{C}$ angles in alkanes and olefins are discussed instead in terms of a purely van der Waals $\mathrm{H} \cdots \mathrm{H}$ interaction, predominantly repulsive.

The standard heats of formation of compounds from their elements ($\Delta H_{\mathrm{f}}{ }^{\circ}$) have been shown to follow more or less accurately simple additivity laws. ${ }^{3}$ The law of group additivity is capable of reproducing known values of $\Delta H_{f}{ }^{\circ}$ for most species to within the experimental uncertainty when small (i.e., $\leq 1.0 \mathrm{kcal}$) corrections are made for recognizable steric effects. A few compounds of very high polarity, such as $\mathrm{CH}_{3} \mathrm{CF}_{3}, \mathrm{CH}_{2} \mathrm{CCl}_{2}$, and the cyanocarbons, deviate from group additivity by amounts which may be as large as $8-9$ $\mathrm{kcal} / \mathrm{mol}$, but such examples are so far relatively rare. In all such cases, it has been proposed that the deviations arise from polar interactions ${ }^{4-6}$ and relatively simple electrostatic models have been used to rationalize these deviations?

The law of group additivity is based on the decomposition of molecular properties into contributions from groups, a group being defined as a polyvalent atom together with all of its atomically bound neighbors (e.g., $\mathrm{C}_{2} \mathrm{H}_{6}$ is composed of two identical groups, $\mathrm{C}-(\mathrm{C})(\mathrm{H})_{3}$, carbon bound to three H atoms, and one C atom). The fact that group additivity works so well, particularly for the not-too-polar compounds and radicals, ${ }^{3 \mathrm{c}}$ can be rationalized by the deduction that interactions between next-next-nearest neighbors is very small. The group, by definition, includes all interactions between nearest neighbors (bonded atoms) and next-nearest neighbors (1,3 -nonbonded interactions).

The law of bond additivity, which is the next simpler stage in the hierarchy of additivity laws, uses a decomposition of molecular properties into sums of contributions from bonds. Average deviations of observed and calculated $\Delta H_{\mathrm{f}}{ }^{\circ}$ with this law are about $\pm 3 \mathrm{kcal}$ for nonpolar compounds, $\pm 6 \mathrm{kcal}$ for polar compounds, and up to $\pm 12 \mathrm{kcal}$ in extreme cases. It is the purpose of the present paper to examine the theoretical basis for these differences in accuracy between the laws of bond and group additivity and to present a very simple electrostatic model which can account quantitatively for the interactions responsible for the deviations observed.

I. The Methane Problem

The alkanes are considered the least polar of all organic compounds and, consequently, they should be expected to show the smallest deviations from simple bond additivity laws. In actual fact, they do follow reasonably well simple bond additivity schemes, but the observed deviations are not small. This is illustrated by the data in Table 1 showing values of $\Delta H_{\mathrm{f}}{ }^{\circ}$ for compounds in the series $\mathrm{CH}_{n}\left(\mathrm{CH}_{3}\right)_{4-n}$.

If these methyl-substituted methanes followed the law of bond additivity, then the change in ΔH_{f}° on successive CH_{2} insertion (i.e., CH_{3} for H substitution), given by the column labeled Δ_{1}, should be a constant. This constant would be equal to the contribution of one $\mathrm{C}-\mathrm{C}$ bond plus two $\mathrm{C}-\mathrm{H}$ bonds gained by the CH_{2} insertion. In fact, we observe that Δ_{1} becomes progressively more negative indicating progressively greater stability with increasing branching. This has been a somewhat unexpected finding, since one might have intuitively expected that the steric crowding of the methyls would lead to decreased stability. A comparison of the $\Delta H_{\mathrm{f}}{ }^{\circ}$ values for $i-\mathrm{C}_{4} \mathrm{H}_{10}$ with $n-\mathrm{C}_{4} \mathrm{H}_{10}$ and of neopentane with $n-\mathrm{C}_{5} \mathrm{H}_{12}$ shows similarly that the branched compounds are 2.0 and $5.0 \mathrm{kcal} / \mathrm{mol}$ more stable respectively than their straight-chain isomers. This paradoxical result can be called "the methane problem."

The stability of the branched compounds might be ascribed to a general van der Waals' attraction of the CH_{3} groups. However, the fact that the more stable form of n butane occurs with the terminal- CH_{3} groups trans to each other, rather than gauche, would conflict with such a hypothesis.

The methane problem is by no means unique to hydrocarbons, since we find similar behavior in the fluorinated methanes (Table II). We note in this case a much more pronounced increase in stability on F/H substitution than for $\mathrm{CH}_{3} / \mathrm{H}$ substitution as seen by comparing the columns labeled Δ_{1}.

Table I. Heats of Formation of Methyl-Substituted Methanes, $\mathrm{CH}_{n}\left(\mathrm{CH}_{n}\right)_{4-n}{ }^{a}$

Compd	$-\Delta H_{1}{ }^{\circ}{ }^{2} 288$ $\mathrm{kcal} / \mathrm{mol}$	$-\Delta_{1}$	$-\Delta_{2}$
CH_{4}	17.9	2.3	
$\mathrm{CH}_{3}\left(\mathrm{CH}_{3}\right)$	20.2	4.6	2.3
$\mathrm{CH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$	24.8	7.3	2.7
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}$	32.1	8.2	0.9
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{4}$	40.3		

${ }^{a}$ Values from J, D. Cox and G. Pilcher, "Thermochemistry of Organic and Organometallic Compounds," Academic Press, New York, N. Y., 1970. Uncertainties are about $\pm 0.07 \mathrm{kcal} / \mathrm{mol}$ per C atom.

Table II. Heats of Formation of Fluorinated Methanes, $\mathrm{CH}_{n} \mathrm{~F}_{n-4}{ }^{a}$

Compd	$-\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{\circ} 98$, $\mathrm{kcal} / \mathrm{mol}$	$-\Delta_{1}$	$-\Delta_{2}$
CH_{4}	17.9	39	
$\mathrm{CH}_{3} \mathrm{~F}$	56.8 ± 2	51	12
$\mathrm{CH}_{2} \mathrm{~F}_{2}$	108 ± 1	58	7
CHF_{3}	166 ± 1	57	-1
CF_{4}	233 ± 1		

${ }^{a}$ Data from A. S. Rodgers, R. L. Wilhoit, and B. J. Zwolinski, in press.

A number of purely empirical schemes ${ }^{8-10}$ have been proposed to account for deviations from simple bond additivity. The simplest correction is to assume a contribution to $\Delta H_{\mathrm{f}}{ }^{\circ}$ from interactions between each pair of 1,3 -nonbonded atoms. (In such a scheme, $\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CH}_{4}\right)$ would be composed of contributions from $4(\mathrm{C}-\mathrm{H})$ bonds . $+6(\mathrm{H}-\mathrm{H})$ interactions: $\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CH}_{3} \mathrm{~F}\right)$ has $3(\mathrm{C}-\mathrm{H})$ bonds, $1(\mathrm{C}-\mathrm{F})$ bond, $3(\mathrm{H}-\mathrm{H})$ interactions, and $3(\mathrm{H}-\mathrm{F})$ interactions.) Such a scheme would lead to a constant value of Δ_{2}, the difference in successive values of Δ_{1}. We see that such behavior is not obeyed in either series, A further contribution from nonbonded atoms, taken three at a time (we would add to the above, contributions from $4(\mathrm{HHH})$ interactions to $\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CH}_{4}\right)$ and for $\Delta H_{\mathrm{f}}{ }^{\circ}\left(\mathrm{CH}_{3} \mathrm{~F}\right)$ we would include contributions from $1(\mathrm{HHH})$ and 3 (HHF) interactions), would lead to a variable value of the second difference, Δ_{2}, but a constant value of Δ_{3} (not shown in Tables I and II), the difference between two successive values of Δ_{2}. Although such a relation is not obeyed in either series (Tables I and II), it requires only very minor adjustments in the $\Delta H_{1}{ }^{\circ}$, all within the limits of experimental error, to obtain a constant Δ_{3}. The final step in such an hierarchy, to include an interaction between atoms taken four at a time, would have no predictive value, since it would have as many parameters as data. However, the fact that even group additivity requires steric corrections and possibly polar corrections indicates that simple additive corrections to bond additivity can never be adequate.

II. An Electrostatic Model of Alkanes

Considerations stemming from the virial theorem, which we shall not discuss here, suggest that a profitable way of considering deviations from simple bond additivity schemes might be in terms of formal charge schemes similar to those used by Pauling in describing bond energies in heteronuclear diatomic molecules. ${ }^{1 /}$ Such a model suggests that in a
typical alkane molecule, the $\mathrm{C}-\mathrm{H}$ bond has a polarity which can be represented by assigning a formal charge, $-y$, to C , and the opposite charge, $+y$, to H . We ignore for the moment the question of the absolute sign of y. This would lead to a CH_{4} molecule in which each H atom had a charge of $+y$ and the central C atom, $-4 y$.

The ethane molecule would have the charge distribution

In the straight chain paraffin molecules, the CH_{2} groups would carry a $-2 y$ charge on each C atom and again a $+y$ charge on each H atom. In branched paraffins the $\mathrm{C}-\mathrm{H}$ tertiary group would have $-y$ on C and $+y$ on H , while the quaternary C atom would have no charge at all.

We can define E_{el}, an electrostatic energy, for any molecule which arises from the interaction of all the formal charges present in it, In most general terms

$$
\begin{equation*}
E_{\mathrm{e} 1}=\sum_{i<j} q_{i} q_{j} / r_{i, j} \tag{1}
\end{equation*}
$$

where $r_{i, j}$ is the distance between charges q_{i} and q_{j}. Since we are assuming a constant charge, $+y$, on H atoms and a counter charge, $-n y$, on carbon atoms ($n=$ number of bonded H atoms on C), we see that E_{cl} can be written as

$$
\begin{equation*}
E_{\mathrm{e} 1}=y^{2}\left(\sum_{i<j} n_{i} n_{j} / r_{i, j}\right) \tag{2}
\end{equation*}
$$

where the term in brackets is independent of y and depends only on the geometry of the molecule. $\left(n_{i}=+1\right.$ for H atoms, 0 for quaternary $\mathrm{C},-1$ for tertiary $\mathrm{C},-2$ for secondary C , and -3 for primary C ; we assume implicitly that the formal charge is spherically symmetrical and centered on the nucleus of each atom.) Using a standard tetrahedral geometry for all the alkanes with coplanar C atoms in staggered configuration, C-C distances of $1.538 \AA$ with $\mathrm{C}-\mathrm{H}$ distances of $1.093 \AA$, we have computed the values of $E_{\text {el }}$ shown in Table III. (As we shall show later, $E_{\text {el }}$ is relatively insensitive to small variations in geometry and bond lengths.)

We have stopped the table at $n-\mathrm{C}_{7} \mathrm{H}_{16}$ since detailed analysis of the individual interactions shows that after n $\mathrm{C}_{5} \mathrm{H}_{12}$ there will be a constant increment of $2.62 y^{2}$ units per CH_{2} group. A comparison of the consecutive differences in $E_{\text {el }}$ (Table III, column Δ_{1}) with the corresponding differences in $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ of the paraffin hydrocarbons, Δ_{1} ($\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{298}$, Table III), shows that $E_{\text {el }}$ and $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ parallel each other strikingly. A direct identification or even direct proportion between $\Delta_{1}\left(E_{\mathrm{el}}\right)$ and $\Delta_{1}\left(\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}\right)$ is not appropriate since the insertion of a CH_{2} group formed from the elements may be expected to be accompanied by some intrinsic change in $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$. (A contribution of $0.6 \mathrm{kcal} / \mathrm{mol}$ comes just from the use of $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$, rather than $\Delta E_{\mathrm{f}}{ }^{\circ}{ }_{298}$.)

A more interesting comparison is provided by the branched versus normal paraffins. Table IV shows some values of the $\Delta H_{f}{ }^{\circ}{ }_{298}$ and $E_{e l}$ of the C_{4} and C_{5} alkanes. In these isomerization reactions, the number of $\mathrm{C}-\mathrm{C}$ bonds and $\mathrm{C}-\mathrm{H}$ bonds is constant so that by equating the heats of isomerization, $\Delta H_{\text {isom }}(298)$, with $\Delta E_{\text {el }}$ we calculate a unique value for y. Taking an average of the values from Table IV, we find $y^{2}=1.12 \pm 0.2[\AA(\mathrm{kcal} / \mathrm{mol})]$. This

Table III. Electrostatic Energies of the n-Alkanes

n-Alkane	$-E_{\text {el }}{ }^{a} / y^{2}$	Δ_{1}	$\Delta_{1}\left(\Delta H_{\mathrm{i}}{ }^{\circ}{ }^{298}\right)$ $\mathrm{kcal} / \mathrm{mol}$
CH_{4}	11.28	0.91	2.3
$\mathrm{C}_{2} \mathrm{H}_{6}$	12.19	2.58	4.6
$\mathrm{C}_{3} \mathrm{H}_{8}$	14.77	2.63	5.3
$\mathrm{C}_{4} \mathrm{H}_{40}$	17.40	2.62	4.9
$\mathrm{C}_{5} \mathrm{H}_{22}$	20.02	2.62	4.9
$\mathrm{C}_{6} \mathrm{H}_{14}$	22.64	2.62	4.9
$\mathrm{C}_{7} \mathrm{H}_{26}$	25.26		

${ }^{\text {a }}$ Units of $E_{\text {el }}$ are $y^{2} \AA^{-1}$. To convert to $\mathrm{kcal} / \mathrm{mol}$, multiply by 14.4. y will be in units of esu $\times 10^{-10}$.
gives $|y|=0.278 \times 10^{-10}$ esu $=0.0581$ electronic charge.
Comparing the observed and calculated values of $\Delta H_{\text {isom }}$ (298), using this value of y, gives agreement to within the experimental uncertainty. If now we use this same value, we can calculate the bond part of the CH_{2} increment in the normal paraffins. At $298^{\circ} \mathrm{K}$ the total increment is $4.95 \mathrm{kcal} / \mathrm{mol} .^{2}$ From Table III we see that $-\Delta_{1}\left(E_{\mathrm{e} 1}\right)=$ $2.62 y^{2}=2.94 \mathrm{kcal} / \mathrm{mol}$. The difference, $-4.95+2.94=$ $-2.0 \mathrm{kcal} / \mathrm{mol}$, we can take as the contribution of the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds to $\Delta H_{f}{ }^{\circ}$ of insertion of a CH_{2} group.

$$
\begin{equation*}
\Delta H_{\mathrm{f}}^{\circ}{ }_{298}\left(\mathrm{CH}_{2}\right)=1(\mathrm{C}-\mathrm{C})+2(\mathrm{C}-\mathrm{H}) \text { bonds }+\Delta E_{\mathrm{e} 1} \tag{3}
\end{equation*}
$$

With this value and the calculated values of E_{el}, we can now calculate the $\Delta H_{\mathrm{f}}{ }^{\circ}(298)$ values of all the paraffin hydrocarbons, starting with one of them, let us say, $\mathrm{C}_{2} \mathrm{H}_{6}$. A typical example might be $n-\mathrm{C}_{5} \mathrm{H}_{12}$ for which we could calculate

$$
\begin{align*}
\Delta H_{i}^{\circ}{ }_{298}\left(n-\mathrm{C}_{5} \mathrm{H}_{12}\right) & =\Delta H_{\mathrm{f}}^{\circ}{ }_{298}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)+\Delta E_{\mathrm{e} 1}+3(-2.0) \\
& =-35.0 \mathrm{kcal} / \mathrm{mol} \tag{4}
\end{align*}
$$

in excellent agreement with the observed value, $-35.1 \mathrm{kcal} /$ mol.

If we examine the significance of what is meant by "heat of formation from the elements," we can attempt to make an absolute identification. Let us choose diamond, rather than graphite, as the standard state for carbon. Then the equation for $\Delta H_{\mathrm{f}}{ }^{\circ}$ of a typical alkane, $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$, can be written as

$$
\begin{equation*}
n \mathrm{C}(\text { diamond })+(n+1) \mathrm{H}_{2}(\text { gas }) \longrightarrow \mathrm{C}_{n} \mathrm{H}_{2 n+2} \text { (gas) } \tag{5}
\end{equation*}
$$

The heat of this reaction would be given by

$$
\Delta H_{\mathrm{f} 298}^{\circ}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)_{\text {diamond }}=\Delta H_{\mathrm{f} 298}^{\circ}\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}\right)_{\text {graphite }}-0.5 n
$$

where $0.5 \mathrm{kcal} / \mathrm{mol}$ is the heat of formation of diamond from graphite. This makes our CH_{2} bond contribution to $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ (diamond) equal to $-2.5 \mathrm{kcal} / \mathrm{mol}$.

Now the diamond lattice is made up of "pure" nonpolar, symmetrical bonds, such as we have postulated for paraffin hydrocarbons. Similarly, the homonuclear bond in H_{2} is symmetrical and nonpolar. If we write the above equation in terms of bonds formed and broken, we have (1 mol of diamond has 2 mol of $\mathrm{C}-\mathrm{C}$ bonds since each C atom has four nearest neighbors)
$2 n(\mathrm{C}-\mathrm{C})$ bonds $+(n+1)(\mathrm{H}-\mathrm{H})$ bonds \longrightarrow

$$
\begin{equation*}
(n-1)(\mathrm{C}-\mathrm{C}) \text { bonds }+(2 n+2)(\mathrm{C}-\mathrm{H}) \text { bonds } \tag{6}
\end{equation*}
$$

We see that the net change in bonds is
$(n+1)(\mathrm{C}-\mathrm{C})$ bonds $+(n+1)(\mathrm{H}-\mathrm{H})$ bonds \longrightarrow
$2(n+1)(\mathrm{C}-\mathrm{H})$ bonds

Table IV. $\Delta E_{\text {el }}$ and $\Delta H_{\text {isoul }}$ for C_{4} and $\mathrm{C}_{\mathbf{i}}$ Paraffins

Paraffin	$-E_{\mathrm{cl}}{ }^{\text {a }}$, y^{2}		$\begin{gathered} -H_{\mathrm{ixom}} \\ (298), \\ \mathrm{kcal} / \\ \mathrm{mol} \end{gathered}$	$\begin{gathered} -\Delta H_{\text {ioonn }} \\ (\text { (calcd) } \\ \text { kcal/ }, \\ \text { mol } \end{gathered}$
$\begin{aligned} & \overline{n-\mathrm{C}_{4} \mathrm{H}_{10}} \\ & i-\mathrm{C}_{4} \mathrm{H}_{20} \end{aligned}$	$\begin{aligned} & 17.40 \\ & 19.02 \end{aligned}$	1.62	2.0	1.8
$\begin{aligned} & n-\mathrm{C}_{5} \mathrm{H}_{12} \\ & i-\mathrm{C}_{5} \mathrm{H}_{12} \end{aligned}$	$\begin{aligned} & 20.02 \\ & 21.55 \end{aligned}$	1.53	1.8	1.7
$\begin{aligned} & n-\mathrm{C}_{5} \mathrm{H}_{12} \\ & \text { Neopeniane } \end{aligned}$	$\begin{aligned} & 20.02 \\ & 24.92 \end{aligned}$	4.90	5.2	5.5

${ }^{a}$ Units are $y^{2}{ }^{-1}$. To convert to $\mathrm{kcal} / \mathrm{mol}$, multiply by 14.4 (y is in units of esu $\left.\times 10^{-19}\right) .{ }^{b}$ Last column is calculated with $y^{2}=1.12$ ($\mathrm{kcal} / \mathrm{mol}$) \AA.
$\Delta H_{298}{ }^{\circ}$ for this reaction which is what is meant by $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ (diamond) can then be set equal to ($n+1$) CH_{2} bond increments plus the change in electrostatic energy. Since this latter is zero in the symmetrically bonded elements, $\Delta E_{\text {el }}$, the difference is just the value we have calculated for the alkanes. Hence, we have

$$
\begin{align*}
& \Delta H_{\mathrm{f}}{ }^{\circ} 298 \\
&\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)_{\mathrm{diamond}}= \tag{8}\\
&-(n+1) 2.5+E_{\mathrm{e} 1}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)
\end{align*}
$$

or reducing back to graphite as standard state by subtracting $-0.5 n$

$$
\begin{align*}
\Delta H_{\mathrm{f} 298}^{\circ}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)_{\mathrm{graphite}} & = \\
& -2.0 n-2.5+E_{\mathrm{e} 1}\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right) \tag{9}
\end{align*}
$$

Values so calculated for the paraffins up to $n-\mathrm{C}_{7} \mathrm{H}_{16}$ are shown in Table V. With the exceptions of CH_{4}, for which the deviation though small is outside experimental error, all the other calculated values agree to within experimental uncertainty with the reported value. (Another exception may be isopentane whose calculated value of $\Delta H_{\mathrm{f}}{ }^{\circ}$ should be diminished by a steric repulsion due to a gauche conformation of CH_{3} groups. This might make this discrepancy as large as $0.8 \mathrm{kcal} / \mathrm{mol}$. We say "might" because only a complete treatment using all nonbonded interactions could decide (see next section).) It is also worth noting that the agreement is about the same if we choose $0^{\circ} \mathrm{K}$ as our reference temperature. Here the CH_{2} bond contribution becomes 0.7 kcal rather than 2.0 kcal .

The present model which does surprisingly well for the hydrocarbons is not, however, complete in that it does not include the interactions of nonbonded H atoms (i.e., ortho, cis, and gauche interactions). Although these are each small, i.e., of the order of 0.8 to 1.0 kcal each, they can become quite significant in large, highly branched molecules. We make no effort to be more complete in the present paper since electrostatics contributes something to such interactions, and a more extensive analysis would be required than we can now make.

III. Rotational Conformations

The origin of the barrier to rotation about single bonds has been a subject of controversy for some time. Explanations have varied from those of a pure electrostatic nature to those involving very complex properties of the molecular orbitals involved. ${ }^{12}$ Some time ago, Clinton ${ }^{13}$ pointed out an interesting empirical relation between the changes in ΔV_{nn}, the difference in nuclear potential energy in eclipsed and staggered conformations, and the magnitude of the rotational barrier V_{0} in systems with threefold barriers. Empirically it was observed that $V_{0} \sim 0.6 \Delta V_{\mathrm{nn}}$ and an electrostatic model was suggested to account for this relation. With the

Table V. Comparison of Calculated and Observed Values of $\Delta H_{\mathrm{f}}{ }^{\circ}{ }_{298}(\mathrm{kcal} / \mathrm{mol})$ for Alkanes

Compd	$-H_{\mathrm{f}}{ }^{\circ}{ }_{298}$ (obsd)	$-\Delta H_{\mathrm{f}}{ }^{\circ}{ }^{2988}$ (calcd)	Δ (obsd - (calcd)
CH_{4}	17.9	17.2	-0.7
$\mathrm{C}_{2} \mathrm{H}_{6}$	20.2	20.2	0.0
$\mathrm{C}_{3} \mathrm{H}_{8}$	24.8	25.0	0.2
$n-\mathrm{C}_{4} \mathrm{H}_{10}$	30.1	30.0	0.1
$i-\mathrm{C}_{4} \mathrm{H}_{10}$	32.1	31.8	-0.3
$n-\mathrm{C}_{5} \mathrm{H}_{12}$	35.1	35.0	-0.1
$i-\mathrm{C}_{5} \mathrm{H}_{12}$	36.9	36.7	-0.2
$\mathrm{Neopentane}^{n-\mathrm{C}_{6} \mathrm{H}_{14}}$	40.3	40.5	0.2
$n-\mathrm{C}_{-1} \mathrm{H}_{16}$	40.0	39.9	-0.1

present disposition of formal charges based on heats of formation, we can test such a model. Using the observed (for $\mathrm{C}_{2} \mathrm{H}_{6}$) values ${ }^{14}$ of $r_{\mathrm{C}-\mathrm{C}}=1.534 \AA / r_{\mathrm{C}-\mathrm{H}}=1.093 \AA$, and all tetrahedral angles, and assuming no significant geometry changes on rotation, we can calculate a contribution to the rotation barrier of $0.030 \mathrm{kcal} / \mathrm{mol}$, the staggered model having the lower energy. This is negligible compared to the experimental barrier of $2.9 \mathrm{kcal} / \mathrm{mol}$. ${ }^{14,15}$

If we use the disposition of charges suggested by Clinton's model which would correspond to an almost ionic bond, we would find enormous electrostatic energies for the paraffins. This would seem to rule out rather definitively the purely electrostatic rotation barrier. The other simple model is one involving a steric repulsion between H atoms. On the basis of closest, nonbonded H...H distances in the crystalline hydrocarbons and their measured sublimation energies, Huggins ${ }^{16}$ has proposed a set of empirical potential functions for nonbonded $\mathrm{C}-\mathrm{H}, \mathrm{H}-\mathrm{H}$, and $\mathrm{C}-\mathrm{C}$ interactions. $\left(V_{\mathrm{H} \ldots \mathrm{H}}(\mathrm{kcal} / \mathrm{mol})=4 \times 10^{5} \exp (-5.4 r)-47 r^{-6}-\right.$ $98 r^{-8}-205 r^{-10}$. The simpler function of McCullough and McMahon, ${ }^{26} \quad V_{\mathrm{H} \cdots \mathrm{H}}(\mathrm{kcal} / \mathrm{mol})=43473 r^{-12}-$ $105.9 r^{-6}$, fits the data nearly as well.) These were fitted to the experimental rotation barrier in $\mathrm{C}_{2} \mathrm{M}_{6}$ as well (see Figure 1).

It has a potential minimum at $r_{\mathrm{H} \ldots \mathrm{H}}=3.0 \AA\left(V_{\mathrm{min}} \simeq\right.$ $-0.050 \mathrm{kcal} / \mathrm{mol}$) and a zero of interaction at $r_{\mathrm{H} \cdots \mathrm{H}}=2.7$ \AA. All the other potential functions which have been proposed are more repulsive at the closest $r_{\mathrm{H} \ldots \mathrm{H}}$ distances of $2.27 \AA$, which occur in the eclipsed form of ethane. Any proposal which ignores this strong repulsion will give unreasonable values for the $\mathrm{H} \cdots \mathrm{H}$ nonbonded distances in hydrocarbon crystals or incorrect sublimation energies. This H...H repulsion seems to us the most reasonable solution to the barrier problem and related structural anomalies of hydrocarbons.
The most recent theoretical analyses of the rotational barrier have come to the same conclusion; namely, that closed shell repulsion is the best description. Over the past decade there have been a number of efforts ${ }^{18}$ to account for the anomalies in bond lengths and angles occurring in hydrocarbons including very branched molecules and strained rings. These treatments have required the use of a potential function for all bonded and nonbonded interactions. It is only in the most recent ${ }^{18 d}$ that electrostatic interactions have been introduced. The torsion potential has varied from a completely repulsive $\mathrm{H} \ldots \mathrm{H}$ interaction to one in which repulsion plays no role. The most recent efforts ${ }^{18 \mathrm{~d}}$ have employed $\mathrm{H} \cdots \mathrm{H}$ potentials very similar to Huggins! It is clear from this work that there is probably no unique choice of all of the potential parameters. For these reasons it is of considerable interest to try to introduce additional considerations, such as dipole moments and heats of formation, in an effort to further delineate the possible choices.

Another test of the model is to calculate the difference in

Figure 1. Graphic presentation of Huggins' nonbonded H...H inleraction potential function.
energies between the trans and gauche conformations in n $\mathrm{C}_{4} \mathrm{H}_{10}$. The presently computed model with $|\boldsymbol{y}|=0.0581$ electronic charge gives an energy of $0.15 \mathrm{kcal} / \mathrm{mol}$, favoring the trans form compared to an experimental value of $0.8 \pm$ $0.1 \mathrm{kcal} / \mathrm{mol}{ }^{3 b}$ If we construct a tetrahedral model of gauche butane, we find that in a perfectly staggered conformation, the nearest H atoms on the $\mathrm{C}-1$ and $\mathrm{C}-4$ atoms are only $1.8 \AA$ apart, an impossibly close position. If we spread the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles to the observed values of about $112.4^{\circ},{ }^{17}$ this distance increases to about $2.1 \AA$, still too close. Slight twists of about 13° in each of the terminal CH_{3} groups could increase this separation to a very small interaction at $r_{\mathrm{H} \ldots \mathrm{H}} \sim 2.6 \AA$ at an energy cost of about $1.5 \mathrm{kcal} / \mathrm{mol}$. While this is far too great compared to the empirical 0.8 $\mathrm{kcal} / \mathrm{mol}$, it suggests that even smaller twists and bends uniformly distributed over the molecule could reduce the H. . H repulsion at a smaller energy cost. The calculation of these small energy changes would require the use of the complete potential function of the molecules which we are not yet in a position to make, but which has been done in many similar cases ${ }^{18}$ in good quantitative agreement with our conclusions.

Another piece of evidence which supports this steric $\mathrm{H} \cdots \mathrm{H}$ repulsion is the anomalous spreading of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle in n-paraffins from the expected tetrahedral angle at 109.5° to about 112.4°. ${ }^{17}$ We have made calculations of $E_{\text {el }}$ of the paraffins using this angle and find that it changes by a negligible amount, of the order of $-0.02 \mathrm{kcal} / \mathrm{mol}$ per interaction. However, it does change the $\mathrm{H} \cdots \mathrm{H}$ distance of proximate H atoms on alternate CH_{2} groups from 2.49 to $2.54 \AA$. (This changes further to $2.59 \AA$ if we make allowance for the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in the CH_{3} groups being reduced from tetrahedral (109.5°) to the observed 107.7°.) This would reduce the total $\mathrm{H} \cdots \mathrm{H}$ repulsion by about 0.22 kcal, using Huggins' potential function. ${ }^{16}$ Allowance for the CH_{3} conical angle contraction increases the savings to 0.40 . If we calculate the energy necessary to bend the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle from 109.5 to 112.4° using the known frequency of about $350 \mathrm{~cm}^{-1}$, we find a value of $0.2 \mathrm{kcal} / \mathrm{mol}$, in excellent agreement. This is also in accord with earlier, more extensive analyses. ${ }^{18}$

We find a similar phenomenon in the $\mathrm{C}=\mathrm{C}-\mathrm{C}$ bond

$$
\begin{aligned}
& *_{\mathrm{CH}_{2}}=2 \mu_{\mathrm{CH}} \cos 53.1^{\circ}=1.20 \mu_{\mathrm{CH}} \\
& { }^{\mathrm{CH}_{3}}=3{ }^{2} \mathrm{CH}_{\mathrm{CH}} \cos 68.8^{\circ}=1.90 \mu_{\mathrm{CH}} \\
& \mu_{\mathrm{C}_{3} \mathrm{H}_{\mathrm{B}}}=\mu_{\mathrm{CH}_{2}}-2 \mu_{\mathrm{CH}_{3}} \cos 56.2^{\circ}=0 \\
& \mu_{\text {ind }}\left(\mathrm{CH}_{3}\right),=0.151 \mathrm{D} \\
& \mu_{1 \mathrm{nd}}\left(\mathrm{CH}_{3}\right)_{*}=0.062 \mathrm{D} \\
& \mu_{\text {net }}\left(\mathrm{C}_{3} \mathrm{H}_{\mathrm{g}}\right)=0.089 \mathrm{D}(\mathrm{calc} .)
\end{aligned}
$$

Figure 2. Inırinsic and induced dipole moments for CH_{3} and CH_{2} groups in propane calculated from the observed geometrical structure of the molecule.
angle in olefins. Instead of the expected bond angle of 120°, we find a bond angle in the range $124 \pm 1^{\circ} .{ }^{19,20}$ In propylene this would make for a $\mathrm{H} \cdots \mathrm{H}$ distance of $2.40 \AA$ between the H on the terminal CH_{2} and the coplanar H of the cis- CH_{3} group. This would correspond to a repulsion of about $0,5 \mathrm{kcal} / \mathrm{mol}$ using the Huggins' potential. ${ }^{16}$ A slight twist of about 15° in the CH_{3} group would increase $\mathrm{H} \cdots \mathrm{H}$ to about $2.6 \AA$ and reduce their repulsion to about 0.1 kcal . We shall discuss this in more detail in a later paper.

IV. Dipole Moments

The formal charge model we have described so far is one which has been based exclusively on energy considerations. It leads to a $\mathrm{C}-\mathrm{H}$ bond dipole moment of

$$
\begin{aligned}
\mu_{\mathrm{CH}} & =y r_{\mathrm{CH}}=0.278 \times 1.093 \mathrm{D} \\
& =0.304 \mathrm{D}
\end{aligned}
$$

This value is in unexpectedly good agreement with values which had been suggested on the basis of stick-dipole models of substituted hydrocarbons ${ }^{21}$ and also spectroscopic data on infrared intensities. ${ }^{22}$ We can further compare it with the dipole moments of hydrocarbons which have been available from microwave measurements of Stark effects. ${ }^{23}$

The first hydrocarbon to show a dipole moment is propane, $\mathrm{C}_{3} \mathrm{H}_{8}$. The center of symmetry of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ precludes such a property. If propane were composed of completely tetrahedral angles and constant $\mathrm{C}-\mathrm{H}$ distances, it would not have a dipole moment. In actual fact, its observed dipole is very small, namely 0.083 D . Using the known geometry and the value of y obtained here, we calculate a dipole moment of 0.000 D (Figure 2)!

The zero value arises from a curious cancellation of compensating effects, namely, a closing of the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle in CH_{2} to 106.1° and a spreading of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle to 112.4°. Both of these effects would give a net moment of about 0.027 D were they not precisely canceled by a contraction of the CH_{3} cone angle from tetrahedral $\left(70.5^{\circ}\right)$ to 68.6°.
If the observed dipole does not arise from the given disposition of charge, we can conclude that this disposition is not correct or the assumption of spherically symmetric formal charge distributions is incorrect. No reassignment of formal charges can satisfy both the energy considerations and the observed dipole moment. Thus we could fit the dipole moment by assigning a greater charge to each H in CH_{3} of 25%, but this would completely vitiate the simple energy relations found.

The most satisfactory solution lies in the distortion of the electronic clouds in the CH_{2} and CH_{3} groups caused by the unsymmetrical electrostatic fields acting on them. Let us, for simplicity, consider the CH_{2} and the CH_{3} groups respectively as polarizable spheres carrying point dipoles, centers on the symmetry axis of each group, and located $0.36 \AA$ from the C atom in CH_{3} and $0.33 \AA$ from the C atom in
CH_{2}; both correspond to the projected positions of the H atoms along the symmetry axes.

We calculate an induced moment of 0.151 D in the CH_{2} group (using $\alpha_{\mathrm{CH}_{2}}=1.8 \AA^{3}$) by the two CH_{3} groups. This is the induced component along the molecular symmetry axis. For the two CH_{3} groups we calculate a net induced moment along the symmetry axis of 0.062 D), leading finally to a net molecular dipole of 0.089 D , in surprisingly good agreement with the observed 0.083 D . (The finite dipole model for CH_{3} and CH_{2} (using the assigned point charges located at the nuclei) and calculating the polarizations at each atom gives essentially the same result, $\mu=0.079$ D.) The negative end of the dipole is located at the CH_{2} group and the positive end at the methyls.

If we calculate the energy associated with these induced dipole moments, it is of the order of $0.1 \mathrm{kcal} / \mathrm{mol}$ and hence negligibly small. Laurie and Muenter ${ }^{24}$ have discussed the polarity of the dipole moment in alkanes based upon some observations associated with D / H substitution $\mu\left(\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{CH}_{3}\right)=0.094 \mathrm{D}$, an increase of about 0.01 D . The accompanying change in the $\overline{\mathrm{C}}-\mathrm{D}$ bond length is a decrease of about $0.0035 \AA . i-\mathrm{C}_{4} \mathrm{H}_{10}$ and $i-\mathrm{CD}\left(\mathrm{CH}_{3}\right)_{4}$ show the same quantitative change as does the pair $\mathrm{CH}_{3} \mathrm{~F} / \mathrm{CD}_{3} \mathrm{~F}$. Since in $\mathrm{CH}_{3} \mathrm{~F}$ the F end is certainly negative, the author's conclusion was that D / H substitution increases μ when it occurs at the positive end of the dipole. This is consistent with the substitution effects in propanes and isobutanes but not in methyl acetylenes.

However, the magnitudes of the changes are very different and suggest other effects are at work in D / H substitution. The direction of the $\mathrm{C}^{-}-\mathrm{H}^{+}$bond dipole is more directly determined from the dipole moments of the halo o-, m-, and p-toluenes. ${ }^{23}$ The observation $\mu_{\text {ortho }}<\mu_{\text {para }}$ indicates that the $\mathrm{C}-\mathrm{X}$ bond dipole must have the same polarity as the $\mathrm{H}-\mathrm{C}$ dipole. This is also in accord with the dipole moments of cis- and trans-1-halopropenes where it is found that $\mu_{\text {trans }}>\mu_{\text {cis }}$.

A similar analysis for isobutane which has a dipole moment of 0.132 D , about 50% greater than that of propane, gives again a net dipole dominated by the induced moment of the three methyl groups. The calculated value is about 0.125 D for a point dipole model and about 0.120 D for a point charge model. Again, the energies associated with these induced dipoles are negligible. (The energy of a di-pole-induced dipole interaction is given classically by $E=$ $2 \mu^{2} \alpha / r^{6}$ where μ is the point dipole, α the polarizability of the spherical matter, and r their distance apart.)

Discussion

The model presented for bonding in the hydrocarbons gives a very simple picture for the relative stability of the alkanes. If we explore the detailed contributions which make up E_{el}, for example, we find we can give a very simple explanation of the stability of the highly branched alkanes relative to the normal alkanes. In an n-paraffin chain the main stabilizing contribution to E_{el} is the attraction of bonded C and H atoms. Considering each neutral group CH_{n} in the chain separately, all other interactions are repulsive. The largest repulsive contributions come from adjacent CH_{2} groups. When we isomerize an n-alkane to a branched alkane, we convert two CH_{2} groups into a CH plus a CH_{3} group. This gives a small increase in $\mathrm{C}-\mathrm{H}$ attraction since the increase in charge on carbon going from methylene carbon $(-2 y)$ to methyl carbon $(-3 y)$ more than compensates the loss in $\mathrm{C}-\mathrm{H}$ attraction going from CH_{2} to CH . However, there is a bigger decrease in $\mathrm{C}-\mathrm{C}$ repulsion since the methyl group we have created at the expense of a CH_{2} now finds itself attached to a CH group as shown in the following diagram.

Table VI. Net Electrostatic Interactions of CH_{3} and CH_{2} Groups with Other Groups in the Normal Paraffin Chain of $\mathrm{C}_{7} \mathrm{H}_{26}$

Net interaction energy (kcal/mol) with nth					
Group	1st	2nd	neighboring CH_{2} 3rd	4th	5th
CH_{3}	0.609	0.139	0.0186	0.0131	0.0012
CH_{2}	0.356	0.116	0.0027	0.0131	

Considering only $\mathrm{C}-\mathrm{C}$ repulsions we note a net change of $3(4) / r_{\mathrm{cc}}=12 / r_{\mathrm{cc}}$ in the n-paraffin going to $(2+2+3) / r_{\mathrm{cc}}$ $=7 / r_{\mathrm{cc}}$ in the isomer.

It is also instructive to look at the detailed interaction in a long chain. Electrostatic interactions fall off inversely with distance and hence it might be expected that all groups in a paraffin chain would interact strongly with each other. In actual fact, each unit in a chain is electrically neutral and thus can be looked upon as a dipole whose interaction with other dipoles falls off as r^{-3} and thus very rapidly. This is seen in Table VI where we have itemized the detailed energies of interaction of a terminal CH_{3} with successive CH_{2} units in $n-\mathrm{C}_{7} \mathrm{H}_{16}$ and also the interaction of a CH_{2} group with successively more distant CH_{2} groups. We see that all of the interactions are repulsive and small (i.e., less than 1 kcal). They also fall off so rapidly that after the one to next-next-nearest neighbor, they can be neglected. Even the next-nearest neighbor is very small. This explains why group additivity rules can work so well since it includes all of the near-neighbor interactions implicitly.

We see that even with a more polar family of compounds, since E_{el} varies as y^{2}, that for bonds which might be even fourfold more polar than $\mathrm{C}-\mathrm{H}$ (i.e., $\mu \sim 1.0 \mathrm{D}$) the electrostatic interactions would fall off very rapidly.

It has already been commented on that $E_{\text {el }}$ is relatively insensitive to small changes in angle. This is again a consequence of the smallness of the nonbonded interactions. It is also not too sensitive to internuclear distances, a given per cent error in $r_{\text {bond }}$ giving rise to about the same per cent error in $E_{\text {el }}$. Thus individual variations in $\mathrm{C}-\mathrm{H}$ bonds in hydrocarbons which are of the order of 1% or less contribute negligibly to errors in $E_{\text {el }}$. The repulsive contribution, being very small, even 3% variations in C-C distances (i.e., ± 0.05 \AA) would contribute negligibly to errors in $E_{\text {cl }}$.

In subsequent papers we will deal with the unsaturated hydrocarbon molecules and free radicals which fit the data as well as the saturated species. We will also deal with polar compounds, halogens, oxygen, and nitrogen compounds in which polarization effects are much more important and which also show good agreement with the data. Here the quantitative agreement is not quite so good as with the hydrocarbons and the large polarization effects introduce another significant parameter.

In concluding, we should like to acknowledge the work of Professor V. A. Palm ${ }^{25}$ which was brought to our attention during the preparation of this manuscript and which represents a very similar approach with parallel conclusions.

References and Notes

(1) Presented in part at the Fourth Conference on Energy and Structure, Puerto Rico, January 1974, and at the Spring Meeting of the American Chemical Society, Los Angeles, Calif., April 1974.
(2) Postdoctoral Research Associate.
(3) (a) S. W. Benson and J. H. Buss, J. Chem. Phys., 29, 546 (1958); (b) S. W. Benson, et al, Chem. Rev., 69, 279 (1969); (c) H. E. O'Neal and S. W. Benson, ''Free Radicals," Vol. II, J. K. Kochi, Ed., Wiley-Interscience, New York, N.Y., 1973, Chapter 17.
(4) R. H. Boyd, J. Chem. Phys., 38, 2529 (1963).
(5) J. R. Lacher and H. A. Skinner, J. Chem. Soc. A, 1034 (1968).
(6) J. D. Cox, H. A. Gundry, and A. J. Head, Trans. Faraday Soc., 60, 653 (1964).
(7) A. S. Rodgers, paper given at the 166 th National Meeting of American Chemical Society, Chicago, III., August 1973.
(8) C. T. Zahn, J. Chem. Phys., 2, 671 (1934).
(9) T. L. Allen, J. Chem. Phys., 31, 1039 (1959).
(10) G. R. Somayajulu and B. J. Zwolinski, J. Chem; Soc., in press.
(11) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N.Y., 1960.
(12) R. J. Pitzer, J. Chem. Phys., 47, 965 (1967); J. P. Lowe and R. G. Parr, ibid., 44, 3001 (1961).
(13) W. L. Clinton, J. Chem. Phys., 33, 632 (1960); M. Karplus and R. G. Parr, ibid., 38, 1547 (1963).
(14) D. R. Lide, Jr., J. Chem. Phys., 29, 1426 (1958).
(15) K. S. Pitzer, Discuss. Faraday Soc., No. 10, 66 (1951).
(16) M. L. Huggins, "Structural Chemistry and Molecular Biology," A. Rich and N. Davidson, Ed., W. H. Freeman, San Francisco, Calif., 1968, p 761.
(17) D. R. Lide, J. Chem. Phys., 33, 1514, 1519 (1960).
(18) (a) N. L. Allinger and J. T. Sprague, J. Amer. Chem. Soc., 94, 5734 (1972), and earlier papers; (b) E. J. Jacobs, H. B. Thompson, and L. S. Bartell, J. Chem. Phys., 47, 3746 (1967); (c) J. Kalb, A. Chung, and T. Allen, J. Amer. Chem. Soc., 88, 2938 (1966); (d) F. A. Momany, L. M. Carruthers, R. F. McGuire, and H. A. Sheraga, J. Phys. Chem., 78, 1595 (1974).
(19) J. L. Carlos, Jr., and S. H. Bauer, J. Chem. Soc., Faraday Trans. 2, 70, 171 (1974).
(20) D. R. Lide and D. Christensen, J. Chem. Phys., 35, 1374 (1961).
(21) V. I. Minkin, O. A. Osipov, and Y. A. Zhdanov, "Dipole Moments in Organic Chemistry," Plenum Press, New York, N.Y., 1970, Chapter M.
(22) D. F. Eggers, I. Hisatsune, and L. Von Alten, J. Phys. Chem., 59, 1124 (1955).
(23) R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., No. 10 (1967).
(24) J. S. Muenter and V. W. Laurie, J. Chem. Phys., 45, 855 (1966).
(25) Personal communications and papers by V. A. Palm, Reakts. Sposobnost. Org. Soedin., 10, 413 (1973).
(26) R. L. McCullough and P. E. McMahon, J. Phys. Chem., 69, 1747 (1965).

